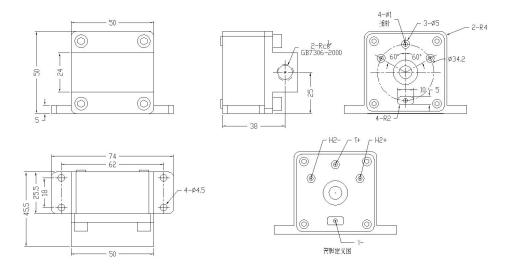


Brief Introduction


FC8001+ H2 detection module, based on fuel cell sensor, relied on numerous patented technology, combined with purpose-designed gas chamber, works as the core part of Photoacoustic spectroscopy, is specialized in the detection of hydrogen in the fields of electric power, nuclear power, industrial safety, environmental monitoring,

Application

Energy; Electric Power; Petrochemical; Mining; Others.....

Dimensions

Notes: 1 All dimensions in mm

2 All tolerances ± 0.15 mm unless otherwise stated

Key Features

- ➤ Industrial gas sensor with numerous of patents;
- Selective detection of H2;
- Free from poisoning & electrolyte leakage. Purpose-designed for hydrogen detection in harsh environment;
- > Precise control of internal environment, free from environmental influence;
- ▶ High stability, long-term sensitivity drift down to 2%/year
- ➢ Wide detection range, up to 60000ppm;
- Long service life of over 10 years.
- Free from influence of oil vapor
- ➢ Free from influence of H2O

> Maintenance free, free from calibration periodically

Technical Specification

Items	Technical Specification	
Principle	Micro Fuel Cell	
Model	FC8001+	
Detection gas	H2	
Volume of Gas Chamber	1ml	
Detection Range (µL/L)	0~40000	
Overload (µL/L)	60000	
Sensitivity (uV/ppm)	1 ± 0.5 (25±3°C)	
Resolution (µL/L)	0.1	
Detection Limit (µL/L)	1 (in oil)	
Response Time (T80)	<15min	
Long-term Sensitivity Drift	2% /year	
Output Signal	linear	
Repeatability	<5% of signal	
Operating Temperature Range (°C)	$-40 \sim 60$	
Operating Humidity Range	$5 \sim 95\%$ (non-condense)	
Operating Pressure Range (kPa)	50 ~ 150	
Service Life	>10years	
Storage Life	5years	

Cross Sensitivity

S/N	Interference Gas	Concentration of Interference Gas	Output of FC8001+ (ppm)
		(ppm)	
1	СО	1000	<20
2	C ₂ H ₄	100	<10
3	C_2H_2	100	<3
4	CH ₄	1000	0
5	C ₂ H ₆	1000	0
6	CO ₂	10000	0
7	O ₂	10000	0

Calculation of Concentration

The sensor will be shipped together with its calibration datasheet, please calculate the concentration as follows:

The sensor is integrated with a temperature sensor in resistance for temperature compensation.

The sensor directly generates two kinds of signal: one is temperature in K Ω and the other is

voltage in uV.

Definition:

- R: Temperature in $K\Omega$
- t: Temperature in $^{\circ}$ C
- V: Voltage collected on-line in uV
- V0: Zero voltage (in clean air) of the sensor at current temperature in uV
- C: Current concentration in ppm
- > Transfer temperature from K Ω into $^{\circ}C$ as follows:

t= - 0.1241 * LN(R*1000) * LN(R*1000) * LN(R*1000) + 4.7186 * LN(R*1000) * LN(R*1000) -

- 74.172 * LN(R*1000) +380
- R: Temperature in $K\Omega$
- Collect and store the zero voltage (in uV) in clean air;
- Calculation of the current concentration (C) in ppm:

C = (V - VO) * EXP [N2 / (273.2 + t) - N1/100]

note: N1, N2, refers to parameters of the sensor on the calibration datasheet;

the voltage range is -2000uV to 20000uV;

the resistance range is 0.5 to $120K\Omega$;

please refresh the zero voltage before every test.

Note

- Avoid exposure to organic or corrosive solvent;
- Avoid exposure to dirty environment;
- Protect from excessive vibration and shock;
- Protect from negative pressure at the membrane of the sensor;

- It is recommended to install the sensor vertically, with gas in from the bottom and out from the top;
- > It takes about 30-60 minutes for one test cycle and it will be better to calculate the concentration with the maximum output;
- It is recommended that the circulating air pump should work continuously for more than 3 minutes during purging and the flow of the air pump should be less than or equal to 500ml/min;
- > Only air can be used for zero voltage test or purging;
- > The sensor works best at a constant temperature between 30 to 40° C.

(診 │ 普 │ 晟 │ **ProSense Technologies Co., Ltd.**

Add:Building4, Lianjian S&T Park, LonghuaDistrict, Shenzhen, China;Tel: +86 755 3669 0079Website: http://www.szprosense.com

Email: sales@szprosense.com